Evaluation of water use and carbon interactions in different agricultural co-cropping systems

Oludare S. Durodola,^{1, 2} Josie Geris¹, Cathy Hawes², Jo Smith³, Tracy Valentine² ¹School of Geosciences, University of Aberdeen, Aberdeen, AB24 3UF, Scotland, UK ²Ecological Sciences Department, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK ³School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, Scotland, UK Email: o.durodola.21@abdn.ac.uk; www.hydronationscholars.scot, Twitter: @DurodolaOludare

Hydro Nation Scholars Programme

10th Anniversary - 2022

Introduction

- Rising water-stressed conditions in early spring and drier summers in some areas of Scotland and the UK^{1, 2}.
- Agricultural co-cropping systems have multiple benefits³.
- Mechanisms for successful co-cropping systems are not fully understood.

Preliminary Results of First Field Season

Hydroclimatological conditions during the study period

✤ Higher air temperatures and lower precipitation compared with 1960 – 2021 (Fig.2).

Agricultural co-cropping

- Agroecological practice of growing two or more crop species simultaneously in the same field.
- Co-cropping barley with pea may improve barley productivity and resource use due to nitrogen fixation by the pea.

Aim and Objectives

- **Project Aim**: To examine the role of agricultural co-cropping systems in sustainable water use and carbon sequestration in a temperate system.
- ✤ Here we present results from an initial field experiment which aimed to characterise water use and carbon sequestration in barley-pea cocropping systems.
- Objectives of phase one were to:
- 1. Quantify crop productivity, water use and soil carbon

Figure 2: Monthly precipitation totals (mm) and average air temperature ($^{\circ}C$) of 2022 hydrological year compared with the long-term (1960 - 2021) for MyInefield-Invergowrie catchment. Source: UK Met Office

Grain yield, LER, WUE, and soil carbon

◆ Pea failed due to the dry spell ⁴.

- Laureate compensated for lower seed rate (100% of monocrop yield) (Table 2).
- Sassy showed less plasticity in co-crop plots (94% of monocrop yield).

Soil carbon was unaffected (Fig. 4).

Table 2: Average grain yields, land equivalent ratio (LER), and water use efficiency (WUE) of the treatments (n = 5).

	A	⊨ Pre-sowing ■ Post-harvest	B	Pre-sowing Post-harvest	Treatment	Crop	Grain	LER	WUE
2.75-			2.75-				yieia (g m ⁻²)		(kg m ⁻ ³)
(%) arbon (%)			(%) 2.50-		Barley (Laureate) monoculture	Laureate	439	-	1.15
0 IOS 2.25	_		2.25		Barley (Sassy) monoculture	Sassy	409	-	1.07
2.00-	•	•	2.00		Pea (LG Stallion) monoculture	LG Stallion	15	-	0.03
Barley1_mono Barley2_mono Pea_mono Barley1+Pea Barley2+Pea Barley1_mono Barley2_mono Pea_mono Barley1+Pea Barley2+Pea Treatments				Laureate and LG	Laureate	439	1.00	1.15	
Fi (2 tre	gure 4. 5 - 30 eatmer	: Soil carbon (%) of A) cm) at pre-sowing and of	topsoil (0 - 5 post-harvest	cm) and B) deep soil t. n = 10 for each	Stallion Sassy and LG Stallion	Sassy	383	0.94	1.00

Figure 3: A - B) Hydroclimatological data during the trial. Source: COSMOS UK. The yellow band is the dry period based on 1- and 3-month Standardised **Precipitation Index (SPI)**. Dash lines : SS1 = pre-sowing, SS2 = mid-growing, SS3 = post-harvest and ISS = isotopic sampling. The triangle is day of sowing, star is day of harvest; -B1 to -B24 are days before sowing; A1 to A9 are days after harvest.

2. Compare two crop genotype traits

3. Determine seasonal changes in water use

Methodology

Trial from 18 April 2022 to 16 September 2022.

Soil and plant samples collected for analysis.

Land equivalent ratio (LER) >1 signifies higher land productivity.

Table 1: Two contrasting barley varieties and one pea variety designed in 5 treatments S/N Treatments **Shortened** Contraction of the second name Barley (Laureate) Barley1_mono monoculture Barley2_mono Barley (Sassy) 2 monoculture Pea (LG Stallion) Pea_ mono monoculture Laureate and LG Barley1+ Pea

Summary of preliminary results

This study is among the first few studies to examine agricultural co-cropping water use, and carbon cycling under a natural water-stressed condition in a temperate climate.

*Under a dry period, barley maintained productivity and water use where pea failed.

*Different responses of the barley genotypes were due to phenotypic plasticity in the absence of competition.